您的位置首页百科问答

二阶方阵

二阶方阵

的有关信息介绍如下:

二阶方阵

我们约定矩阵的表示方法,题中的A记为:A=[1,1;2,2](;之前为第一行。之后为第二行)。用特征方法把A对角化。 |λE-A|=|λ-1,-1;-2,λ-2|=λ(λ-3)=0.λ1=0,λ2=3. λ1=0:-x-y=0.得特征向量(1,-1)′(列向量) λ2=3:2x-y=0.得特征向量(1,2)′ 得到P=[1,1;-1,2]。计算出P的逆P^-1=1/3[2,-1;1,1]。 有P^-1AP=[0,0;0,3](对角矩阵) A=P[0,0;0,3]P^-1 A^100=P[0,0;0,3]^100P^-1 =[1,1;-1,2][0,0;0,3^100]1/3[2,-1;1,1]。 =[3^99,3^99;2×3^99,2×3^99]. (如果你没有学过线性代数,可能看不懂。但是,目前只有特征方法可以解决这个问题。)(哦!本题还可以用数学归纳法直接作,我作出来了。 万斯宇,自己作一下吧,相信你有这个能力!)